

Canstar Intersects 11.8 g/t Gold over 5.7 Metres at Kendell, Commences Winter Drill Program

Toronto, Ontario – February 8, 2022 – CANSTAR RESOURCES INC. (TSXV: ROX & OTCPK: CSRNF) ("Canstar" or the "Company") is pleased to announce additional assay results from 2021 drilling and channel sampling from the Kendell prospect at its Golden Baie project in south Newfoundland. The Company also announces that a winter diamond drill program has commenced at the Kendell prospect. This program is expected to include up to 35 new drill holes which total approximately 2,000 metres and reflect the shallow nature of the mineralization.

Drilling highlights from the final 2021 drill hole assays at the Kendell prospect are provided in Table 1 and include some of the highest-grade intervals to date from this prospect. In addition, gold mineralization was extended by approximately 50 metres down-dip. Notable intervals and higher grade intercepts include:

- 11.8 g/t gold over 5.69 metres in drill hole GB-21-50
- 45.7 g/t gold over 1.07 metres near surface in drill hole GB-21-20
- 11.7 g/t gold over 3.00 metres including 249.7 g/t gold over 0.09 metres in drill hole GB-21-51

Selected detailed drill hole assay results and collar data are provided in Tables 3 and 4, respectively. All assays from drill hole and channel samples from Kendell have now been received and reported. Additional infill sampling of selected 2021 drill core is now being done to ensure that all core from the interpreted zone of mineralization has been assayed.

Drill Hole	From (m)	To (m) Length (m)		Gold (g/t)
GB-21-18	2.28	5.60	3.32	4.9
including	2.77	3.40	0.63	19.1
GB-21-19	3.35	4.57	1.22	5.2
GB-21-20	2.00	4.10	2.10	24.3
including	2.00	3.07	1.07	45.7
GB-21-22	2.95	4.95	2.00	9.5
GB-21-50	21.89	27.58	5.69	11.8
GB-21-51	10.32	13.32	3.00	11.7
including	11.14	11.23	0.09	249.7
GB-21-53	29.63	33.56	3.93	12.2
including	30.82	31.45	0.63	58.3

Table 1 - Highlight assay results from Kendell reported drill holes

Notes:

- 1. All intersections are downhole length as there is insufficient information to calculate true width.
- 2. Reported grades have not been capped.

Matthieu Lapointe, VP Exploration of Canstar, commented: "We continue to be encouraged by the shallow, high-grade gold intercepts at the Kendell prospect. Gold mineralization has been observed in a 50 by 100 metre footprint that remains open along strike and down-dip/plunge. With less than 3,000 metres drilled to date, and limited drilling below 150 metres vertically, there is remarkable potential to expand the mineralization. Given the results announced today, we are excited to commence a winter drill program to further improve our understanding of the controls on gold

mineralization and to better define and extend the high-grade gold mineralization identified from the 2021 drilling."

Additional channel samples from the Kendell prospect trench were also collected in the summer of 2021. The highlights of the channel samples are provided in Table 2 and are interpreted as the surface expression of the gold mineralization intercepted by the drill holes.

	ingringin accay recaile nonn tenden ename					
	Channel	Composite				
Μ		10.4 g/t Au over 7.9m				
	L	9.4 g/t Au over 6.9m				

Table 2. Highlight assay results from Kendell channel sampling

Discussion of Assay Results

Drill holes GB-21-17 to GB-21-19 were drilled from the same platform to test the area below Channel F from the Kendell TGB-20-01 trench, which returned 2.9 g/t gold over 11.0 metres, including 6.2 g/t gold over 5.0 metres (announced <u>November 30, 2020</u>). See the plan map in Figure 1 and vertical section in Figure 2. Drill holes GB-21-18 and GB-21-19 intersected gold mineralization associated with quartz veining and acicular arsenopyrite starting from a depth of two to three metres down hole. Drill hole GB-21-17 was not sampled at the projected depth of the mineralization and this interval is now being sampled as part of the infill sampling program.

Figure 1 - Plan view of Kendell Target showing collars of 2021 drill holes (36 holes drilled, 2,620 metres total)

Drill holes GB-21-20 to GB-21-22 were drilled from the same platform to test the area below Channel G in trench TGB-20-01, which yielded an average grade of 4.7 g/t gold over 6.7 metres, including 10.2

g/t gold over 3.0 metres (see Figures 1 and 3). Drill holes GB-21-20 and GB-21-21 intersected 2.0 metre intervals of 24.3 g/t gold and 9.5 g/t gold, respectively. Coarse gold is generally associated with quartz veining and acicular arsenopyrite.

Figure 2 – Kendell Section A-A' Showing newly reported drill hole assays (looking northeast). Mineralization is open to depth (down-dip) and along strike to the NE and SW.

Drill holes GB-21-50 to GB-21-55 were drilled from two platforms, with three holes per platform, and were designed to test the area 20 to 50 metres down-dip of the mineralization intersected in drill holes GB-21-01 to GB-21-13 (see vertical section in Figure 4). It is interpreted that these drill holes have intersected two mineralized zones, an upper zone approximately one to three metres in length and a lower zone which ranges from three to six metres in length. Both zones are associated with quartz veining and arsenopyrite plus antimony-bearing minerals that are hosted in deformed black shales. The intersection lengths and mineralization styles are comparable to those noted up-dip and the zones appear to form a continuous horizon.

Figure 3 – Kendell Section B-B' Showing newly reported drill hole assays (looking northeast). Mineralization is open to depth (down-dip) and along strike to the NE and SW.

Figure 4 – Kendell Section C-C' Showing highlights of newly reported assays (looking northeast). Mineralization is open to depth (down-dip) and along strike to the NE and SW

Winter Drill Program

Gold mineralization at Kendell was delineated over a down-dip length of approximately 100 metres and a strike length of 50 metres based on assays from 36 drill holes in the 2021 drill program (Figure 5). Mineralized intercepts ranged from one metre to 11 metres in length and are spatially associated with metasedimentary rocks within the interpreted hanging wall of a fault zone that is defined by a four metre to 10 metre thick strongly sheared unit of dark grey to black graphitic shale.

Gold mineralization remains open along strike and down-dip/plunge at the Kendell prospect, as shown in Figure 5. A winter diamond drill program has now commenced to test the continuity of the shallow-dipping gold mineralization along strike, down-dip, and down-plunge. The Company anticipates that the drill program will consist of approximately 2,000 metres in up to 35 drill holes.

Figure 5 - Kendell Plan Map Showing Mineralized Intercepts and Areas to be Drill Tested

Acknowledgements

Canstar wishes to acknowledge the financial support of the 2021 exploration program through the Junior Exploration Assistance Program from the Department of Natural Resources, Government of Newfoundland and Labrador.

QA/QC:

All rock samples were collected by company personnel and shipped to Eastern Analytical of 403 Little Bay Road, Springdale, NL, a commercial laboratory that is ISO/IEC 17025 accredited and completely independent of Canstar Resources Inc. Samples are analyzed for gold using fire assay (30g) with AA finish and an ICP-34, four acid digestion followed by ICP-OES analysis for 34 additional elements. Metallic screening is being used for samples with visible gold and all samples with initial fire assays over 1.0 g/t Au. In addition to Eastern Analytical's quality control program of standards, blanks and duplicates, Canstar's QAQC program utilizes four commercially available reference standards, blanks and duplicate samples to ensure data quality. In addition, duplicates of selected samples are being sent to a second laboratory as check assays.

Qualified Person

Bob Patey, B.Sc., P.Geo, Senior Geologist of Canstar, and a Qualified Person as defined by National Instrument 43-101 - Standards of Disclosure for Mineral Projects, is responsible for the scientific and technical data presented herein and has reviewed and approved this release.

About Canstar Resources Inc.

Canstar is focused on district-scale gold exploration in Newfoundland, Canada. Canstar has a 100% interest in the Golden Baie and Hermitage projects, large claim packages at the south end south-central Newfoundland covering 77,350 hectares or 774 km² with multiple outcropping gold occurrences on a major structural trend. The Company also holds the Buchans-Mary March project and other mineral exploration properties in Newfoundland. Canstar Resources is based in Toronto, Canada, and is listed on the TSX Venture Exchange under the symbol ROX and trades on the OTCPK under the symbol CSRNF.

For further information, please contact:

Rob Bruggeman, President & CEOEmail:rob@canstarresources.comPhone:1-647-247-8715Website:www.canstarresources.com

Hole ID	From (m)	To (m)	Length (m)	Au (ppb)
GB-21-07	2.33	3.45	1.12	13
GB-21-07	3.45	4.4	0.95	84
GB-21-07	4.4	5.42	1.02	158
GB-21-07	5.42	6.22	0.8	532
GB-21-07	6.22	7.29	1.07	46
GB-21-07	7.29	7.67	0.38	8
GB-21-16			NSR	
GB-21-17			NSR	
GB-21-18	1.4	2.28	0.88	69
GB-21-18	2.28	2.77	0.49	954
GB-21-18	2.77	3.4	0.63	19089
GB-21-18	3.4	4.15	0.75	4237
GB-21-18	4.15	5.6	1.45	267
GB-21-18	5.6	6.6	1	371
GB-21-18	51	52	1	6
GB-21-19	1.15	2.35	1.2	76
GB-21-19	2.35	3.35	1	45
GB-21-19	3.35	4.57	1.22	5220
GB-21-19	4.57	5.58	1.01	371
GB-21-19	5.58	6.5	0.92	718
GB-21-19	6.5	7.5	1	128
GB-21-19	7.5	8.6	1.1	28
GB-21-19	27.3	28.38	1.08	19
GB-21-20	1	2	1	271
GB-21-20	2	3.07	1.07	45682
GB-21-20	3.07	4.1	1.03	2050
GB-21-20	4.1	5.04	0.94	231
GB-21-20	5.04	6.08	1.04	10
GB-21-20	6.08	7.08	1	2.5
GB-21-21	1	1.8	0.8	195
GB-21-21	1.8	2.95	1.15	350
GB-21-21	2.95	4.03	1.08	11214
GB-21-21	4.03	4.95	0.92	7512
GB-21-21	4.95	5.95	1	488
GB-21-21	5.95	6.8	0.85	37
GB-21-21	6.8	7.8	1	34
GB-21-22			NSR	
GB-21-49	19.11	20.3	1.19	7
GB-21-49	20.3	20.8	0.5	30
GB-21-49	20.8	21.33	0.53	67
GB-21-49	21.33	22	0.67	2639
GB-21-50	8.37	9.31	0.94	5

Table 3 - Selected drill hole sample assays

Hole ID	From (m)	To (m)	Length (m)	Au (ppb)
GB-21-50	9.31	10.02	0.71	6
GB-21-50	10.02	10.88	0.86	4463
GB-21-50	10.88	11.9	1.02	1326
GB-21-50	11.9	12.87	0.97	382
GB-21-50	12.87	13.85	0.98	186
GB-21-50	13.85	14.85	1	89
GB-21-50	14.85	15.87	1.02	12
GB-21-50	15.87	16.87	1	25
GB-21-50	16.87	17.72	0.85	20
GB-21-50	17.72	18.74	1.02	11
GB-21-50	18.74	19.2	0.46	30
GB-21-50	19.2	19.95	0.75	43
GB-21-50	19.95	20.9	0.95	1143
GB-21-50	20.9	21.89	0.99	414
GB-21-50	21.89	22.46	0.57	2332
GB-21-50	22.46	22.95	0.49	12507
GB-21-50	22.95	23.68	0.73	1161
GB-21-50	23.68	24.62	0.94	21427
GB-21-50	24.62	25.26	0.64	14303
GB-21-50	25.26	26.26	1	20201
GB-21-50	26.26	27.17	0.91	6164
GB-21-50	27.17	27.58	0.41	5661
GB-21-50	27.58	28.22	0.64	343
GB-21-50	28.22	28.73	0.51	68
GB-21-50	28.73	29.72	0.99	62
GB-21-50	29.72	30.46	0.74	35
GB-21-50	30.46	31.2	0.74	2.5
GB-21-50	31.2	31.88	0.68	9
GB-21-50	31.88	32.5	0.62	1361
GB-21-50	32.5	33.22	0.72	1246
GB-21-50	33.22	33.45	0.23	10
GB-21-50	33.45	33.5	0.05	5
GB-21-51	7.88	8.96	1.08	47
GB-21-51	8.96	9.82	0.86	45
GB-21-51	9.82	10.32	0.5	33
GB-21-51	10.32	11.14	0.82	8086
GB-21-51	11.14	11.23	0.09	249744
GB-21-51	11.23	12.29	1.06	4815
GB-21-51	12.29	13.32	1.03	773
GB-21-51	13.32	14.47	1.15	378
GB-21-51	14.47	15.1	0.63	71
GB-21-51	20.19	20.89	0.7	27
GB-21-51	20.89	21.6	0.71	99

Hole ID	From (m)	To (m)	Length (m)	Au (ppb)
GB-21-51	21.6	22.2	0.6	377
GB-21-51	22.2	23.03	0.83	340
GB-21-51	23.03	23.93	0.9	649
GB-21-51	23.93	24.82	0.89	2319
GB-21-51	24.82	25.85	1.03	2069
GB-21-51	25.85	26.85	1	276
GB-21-51	26.85	27.41	0.56	240
GB-21-51	27.41	28.18	0.77	127
GB-21-51	28.18	29.27	1.09	1770
GB-21-51	29.27	30.23	0.96	54
GB-21-51	30.23	30.8	0.57	355
GB-21-51	30.8	31.13	0.33	14
GB-21-51	31.13	31.41	0.28	5580
GB-21-51	31.41	32.33	0.92	18
GB-21-51	32.33	32.8	0.47	13
GB-21-51	32.8	33.18	0.38	6
GB-21-52	10.1	11.09	0.99	2.5
GB-21-52	11.09	11.67	0.58	174
GB-21-52	11.67	12.16	0.49	6364
GB-21-52	12.16	13.53	1.37	252
GB-21-52	13.53	14.29	0.76	1803
GB-21-52	14.29	15.11	0.82	46
GB-21-52	15.11	16.07	0.96	220
GB-21-52	16.07	16.45	0.38	170
GB-21-52	16.45	17.5	1.05	15
GB-21-52	17.5	18.51	1.01	14
GB-21-52	23.86	24.64	0.78	730
GB-21-52	24.64	25.17	0.53	591
GB-21-52	25.17	26	0.83	702
GB-21-52	26	26.52	0.52	1493
GB-21-52	26.52	27.1	0.58	391
GB-21-52	27.1	27.74	0.64	1279
GB-21-52	27.74	28.73	0.99	120
GB-21-52	30.99	31.14	0.15	84
GB-21-52	40.17	41.1	0.93	6
GB-21-53	18.28	19.09	0.81	12
GB-21-53	19.09	20.1	1.01	33
GB-21-53	20.1	21	0.9	2716
GB-21-53	21	21.55	0.55	51
GB-21-53	21.55	22.1	0.55	356
GB-21-53	22.1	23.18	1.08	1662
GB-21-53	23.18	23.85	0.67	322
GB-21-53	23.85	24.55	0.7	609

Hole ID	From (m)	To (m)	Length (m)	Au (ppb)
GB-21-53	24.55	25.08	0.53	100
GB-21-53	25.08	25.97	0.89	35
GB-21-53	25.97	27.01	1.04	3643
GB-21-53	27.01	27.69	0.68	19
GB-21-53	27.69	28.45	0.76	16
GB-21-53	28.45	29.11	0.66	13
GB-21-53	29.11	29.63	0.52	45
GB-21-53	29.63	29.75	0.12	6617
GB-21-53	29.75	30.82	1.07	4053
GB-21-53	30.82	31.45	0.63	58293
GB-21-53	31.45	32	0.55	1497
GB-21-53	32	32.69	0.69	1457
GB-21-53	32.69	33.56	0.87	4989
GB-21-53	33.56	34.54	0.98	316
GB-21-53	34.54	35.46	0.92	51
GB-21-53	36.76	37.2	0.44	77
GB-21-54	10.3	11.3	1	10
GB-21-54	11.33	12.3	0.97	9
GB-21-54	20	21	1	8
GB-21-54	21	22	1	1480
GB-21-54	22	23	1	435
GB-21-54	23	24	1	407
GB-21-54	24	25	1	235
GB-21-54	25	26	1	179
GB-21-54	26	27	1	11
GB-21-54	27	28	1	20
GB-21-54	28	29	1	22
GB-21-54	29	30	1	31
GB-21-54	30	31	1	799
GB-21-54	31	32	1	380
GB-21-54	32	33	1	148
GB-21-54	33	34	1	1095
GB-21-54	34	35	1	1056
GB-21-54	35	36	1	91
GB-21-54	36	37	1	93
GB-21-54	37	38	1	151
GB-21-54	38	39	1	405
GB-21-54	39	40	1	57
GB-21-55	2	2.96	0.96	2.5
GB-21-55	20.22	21.12	0.9	10
GB-21-55	21.12	22.2	1.08	57
GB-21-55	22.2	23.12	0.92	2215
GB-21-55	23.12	24.05	0.93	133

Hole ID	From (m)	To (m)	Length (m)	Au (ppb)
GB-21-55	24.05	25.02	0.97	93
GB-21-55	25.02	25.98	0.96	243
GB-21-55	25.98	27	1.02	374
GB-21-55	27	27.95	0.95	41
GB-21-55	27.95	28.95	1	22
GB-21-55	28.95	29.9	0.95	22
GB-21-55	29.9	30.98	1.08	6
GB-21-55	30.98	31.86	0.88	11
GB-21-55	31.86	32.79	0.93	21
GB-21-55	32.79	33.48	0.69	58
GB-21-55	33.48	34.04	0.56	1602
GB-21-55	34.04	34.93	0.89	106
GB-21-55	34.93	35.93	1	2699
GB-21-55	35.93	36.83	0.9	1301
GB-21-55	36.83	37.8	0.97	6115
GB-21-55	37.8	38.93	1.13	167
GB-21-55	96.32	97.12	0.8	10
GB-21-55	97.12	98.13	1.01	2.5
GB-21-55	100.69	101.53	0.84	15
GB-21-55	101.53	102.02	0.49	2.5
GB-21-55	102.02	103	0.98	6
GB-21-56	4.05	4.92	0.87	10
GB-21-56	4.92	5.7	0.78	33
GB-21-56	5.7	6.58	0.88	14
GB-21-56	6.58	7.35	0.77	564
GB-21-56	7.35	8	0.65	35
GB-21-56	8	8.65	0.65	1116
GB-21-56	8.65	9.63	0.98	942
GB-21-56	9.63	10.2	0.57	16
GB-21-56	10.2	11.1	0.9	17
GB-21-56	11.1	12.02	0.92	11
GB-21-56	30.36	31	0.64	20
GB-21-56	51	52	1	11
GB-21-57	4.83	5.57	0.74	25
GB-21-57	5.57	6.47	0.9	55
GB-21-57	7	7.48	0.48	184
GB-21-57	7.48	8.02	0.54	1501
GB-21-57	8.02	8.73	0.71	400
GB-21-57	8.73	9.46	0.73	13
GB-21-57	16.51	16.67	0.16	56
GB-21-57	18.71	19.37	0.66	268
GB-21-57	19.37	19.76	0.39	237
GB-21-57	19.76	20.36	0.6	144

Hole ID	From (m)	To (m)	Length (m)	Au (ppb)
GB-21-57	51	51.5	0.5	31
GB-21-57	51.5	52	0.5	2.5
GB-21-58	3.61	4.59	0.98	6
GB-21-58	4.59	5.67	1.08	2.5
GB-21-58	5.67	6.39	0.72	135
GB-21-58	6.39	7.09	0.7	37
GB-21-58	7.09	7.8	0.71	572
GB-21-58	7.8	8.56	0.76	51
GB-21-58	8.56	9.49	0.93	471
GB-21-58	9.49	10.31	0.82	86
GB-21-58	10.31	10.97	0.66	8
GB-21-58	19.6	20.77	1.17	126
GB-21-58	20.77	21.15	0.38	38
GB-21-58	21.15	21.78	0.63	196
GB-21-58	21.78	22.2	0.42	108
GB-21-58	22.2	22.36	0.16	1677
GB-21-58	22.36	23.32	0.96	178
GB-21-58	23.32	24.15	0.83	63
GB-21-58	24.15	25.15	1	869
GB-21-58	25.15	26	0.85	46
GB-21-58	26	26.25	0.25	2.5
GB-21-58	31.55	31.79	0.24	31
GB-21-58	36.4	36.88	0.48	10
GB-21-59	25.35	26.1	0.75	905
GB-21-59	26.1	27	0.9	423
GB-21-59	27	28	1	348
GB-21-59	28	28.85	0.85	567
GB-21-59	28.85	29.6	0.75	73
GB-21-59	29.6	30.16	0.56	2.5
GB-21-60	29.98	30.68	0.7	8
GB-21-60	30.68	31.4	0.72	602
GB-21-60	32.65	33.38	0.73	6
GB-21-60	33.38	34.1	0.72	5
GB-21-61			NSR	
GB-21-62	21.75	22.45	0.7	56
GB-21-62	22.45	23.26	0.81	119
GB-21-62	23.26	24.27	1.01	201
GB-21-62	24.27	25.31	1.04	791
GB-21-62	25.31	26.43	1.12	10
GB-21-62	50.9	51.5	0.6	5
GB-21-62	51.5	52	0.5	54

Hole ID	Location	UTME	UTMN	Azimuth	Dip	Total Length (m)
GB-21-07	Kendell	596809	5297874	82	-65	50
GB-21-16	Kendell	596797	5297880	110	-85	97
GB-21-17	Kendell	596849	5297884	145	-45	52
GB-21-18	Kendell	596848	5297885	145	-65	52
GB-21-19	Kendell	596848	5297886	145	-85	28.4
GB-21-20	Kendell	596857	5297891	145	-45	52
GB-21-21	Kendell	596856	5297891	145	-65	61
GB-21-22	Kendell	596856	5297892	145	-85	82
GB-21-49	Kendell	596754	5297930	130	-45	22
GB-21-50	Kendell	596785	5297901	130	-45	82
GB-21-51	Kendell	596784	5297901	130	-65	145
GB-21-52	Kendell	596784	5297902	130	-85	112
GB-21-53	Kendell	596754	5297931	130	-65	172
GB-21-54	Kendell	596754	5297931	130	-45	109
GB-21-55	Kendell	596753	5297931	130	-85	103
GB-21-56	Kendell	596784	5297888	130	-65	52
GB-21-57	Kendell	596783	5297889	130	-45	52
GB-21-58	Kendell	596783	5297889	130	-85	49
GB-21-59	Kendell	596805	5297912	130	-45	52
GB-21-60	Kendell	596805	5297913	130	-65	52
GB-21-61	Kendell	596804	5297913	130	-85	52
GB-21-62	Kendell	596804	5297913	310	-65	52

Table 4 - Collar Data for Reported Drill Holes

Forward-Looking Statements

Neither TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this release.

This News Release includes certain "forward-looking statements" which are not comprised of historical facts. Forward looking statements include estimates and statements that describe the Company's future plans, objectives or goals, including words to the effect that the Company or management expects a stated condition or result to occur. Forward looking statements may be identified by such terms as "believes", "anticipates", "expects", "estimates", "may", "could", "would", "will", or "plan". Since forward-looking statements are based on assumptions and address future events and conditions, by their very nature they involve inherent risks and uncertainties. Although these statements are based on information currently available to the Company, the Company provides no assurance that actual results will meet management's expectations. Risks, uncertainties and other factors involved with forward-looking information could cause actual events, results, performance, prospects and opportunities to differ materially from those expressed or implied by such forward-looking information. Forward looking information in this news release includes, but is not limited to, the Company's objectives, goals or future plans, statements, exploration results, potential mineralization, the estimation of mineral resources, exploration and mine development plans, timing of the commencement of operations and estimates of market conditions. Factors that could cause actual results to differ materially from such forwardlooking information include, but are not limited to failure to identify mineral resources, failure to convert estimated mineral resources to reserves, the inability to complete a feasibility study which recommends a production decision, the preliminary nature of metallurgical test results, delays in obtaining or failures to obtain required governmental, environmental or other project approvals, political risks, inability to fulfill the duty to accommodate First Nations and other indigenous peoples, uncertainties relating to the availability and costs of financing needed in the future, changes in equity markets, inflation, changes in exchange rates, fluctuations in commodity prices, delays in the development of projects, capital and operating costs varying significantly from estimates and the other risks involved in the mineral exploration and development industry, an inability to predict and counteract the effects of COVID-19 on the business of the Company, including but not limited to the effects of COVID-19 on the price of commodities, capital market conditions, restriction on labour and international travel and supply chains, and those risks set out in the Company's public documents filed on SEDAR. Although the Company believes that the assumptions and factors used in preparing the forward-looking information in this news release are reasonable, undue reliance should not be placed on such information, which only applies as of the date of this news release, and no assurance can be given that such events will occur in the disclosed time frames or at all. The Company disclaims any intention or obligation to update or revise any forward-looking information, whether as a result of new information, future events or otherwise, other than as required by law.